

Home Search Collections Journals About Contact us My IOPscience

EPR study of a trigonally symmetric Gd³⁺ centre in RbCaF₃

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 1417

(http://iopscience.iop.org/0953-8984/7/7/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.179 The article was downloaded on 13/05/2010 at 11:58

Please note that terms and conditions apply.

EPR study of a trigonally symmetric Gd³⁺ centre in RbCaF₃

H Takeuchi[†], H Ebisu[†] and M Arakawa[†]

† Department of Information Electronics, School of Engineering, Nagoya University, Nagoya 464-01, Japan

‡ Department of Physics, Nagoya Institute of Technology, Nagoya 466, Japan

Received 16 November 1994

Abstract. EPR measurements at 300 K have been made on RbCaF₃ crystals doped with Gd³⁺ using an X-band spectrometer. Together with the signals from the cubic Gd³⁺ centre, a trigonally symmetric spectrum is observed from as-grown crystals, and is ascribed to a Gd³⁺ ion associated with a nearest Rb⁺ vacancy. The separated axial, cubic and hexagonal parameters for the trigonal Gd³⁺ centres in RbCaF₃ and CsCaCl₃ are discussed in terms of a ligand distortion model in comparison with the parameters for the tetragonal centres in several perovskite fluorides. The larger b_{2a} and b_{4a} for the trigonal centre in RbCaF₃ compared with those in CsCaCl₃ are explained by the ease of rotational deviations of ligand anions, and are consistent with the higher transition temperature of structural change from cubic to lower symmetry for RbCaF₃ than CsCaCl₃.

1. Introduction

 Gd^{3+} ions substitute selectively for the monovalent or divalent cations in the ABX₃ type crystals with perovskite structure. When a Gd^{3+} ion substitutes for the B^{2+} ion with no charge compensator in its immediate neighbourhood, it forms the cubic centre where surroundings of the Gd^{3+} ion have cubic symmetry. In some matrix crystals, centres with lower symmetries are formed together with the cubic centre. Arakawa *et al* (1982, 1985) reported the tetragonal Gd^{3+} centres in several perovskite fluorides, where Gd^{3+} are associated with the nearest B^{2+} vacancy ($Gd^{3+}-V_B$ centre) or a Li⁺ ion at the nearest B^{2+} site ($Gd^{3+}-Li^+$ centre) due to compensation of the excess positive charges on the Gd^{3+} ions. These tetragonal centres are formed easily in as-grown crystals.

To the authors' knowledge, however, there have been no reports on Gd^{3+} centres associated with nearest A⁺ vacancies in perovskite fluorides ($Gd^{3+}-V_A$ centre). Similar $Fe^{3+}-V_A$ and $Cr^{3+}-V_A$ centres have been found in KZnF₃ or KMgF₃ (Krebs and Jeck 1972, Patel *et al* 1976). As for perovskite chlorides, Vaills and Buzaré (1987) reported the Gd^{3+} centre associated with a nearest Cs⁺ vacancy in CsCaCl₃ together with the cubic Gd³⁺ centre. The b_2^0 parameter of this centre is very small, that is 3.3×10^{-4} cm⁻¹, as compared with large values of the order of 10^{-2} cm⁻¹ to 10^{-1} cm⁻¹ for Fe³⁺ and Cr³⁺ centres in perovskite fluorides. It is therefore interesting to observe EPR spectra from some Gd³⁺-V_A centre in the perovskite chloride.

The RbCaF₃ crystal has a cubic perovskite structure with space symmetry group O_h^1 at room temperature and undergoes a displacive structural phase transition at 193 K. In recent EPR research, we found the existence of a trigonal Gd³⁺ centre in RbCaF₃ in its cubic phase. In the present paper, we will report the results of EPR measurements at room temperature for this centre in RbCaF₃.

In section 3, the spectrum observed will be described by the spin Hamiltonian with trigonal symmetry about the [111] axis. Accurate spin Hamiltonian parameters are presented up to the sixth-rank fine-structure terms. From considerations of charge compensation, the centre is identified to be the $Gd^{3+}-V_{Rb}$ centre. In section 4, the fine-structure terms of the present trigonal centre and the tetragonal centres previously reported are separated into uniaxial, cubic and hexagonal terms. This separation analysis is useful to investigate simultaneously the structures of the complexes with different symmetries, such as cubic, trigonal and tetragonal Gd^{3+} centres. In section 5, the separated parameters for the trigonal centres will be discussed by considering deviations of surrounding ions. First, we consider the relationship between the magnitude of the b_{4c} parameter and $Gd^{3+}-F^-$ distance in the cubic centre. Next, we consider the relationship between the b_{2a} parameter for the trigonal centre and the tolerance factor t that characterizes the ease of rotational distortion of the ligand octahedron. Last, we investigate the relationships among the axial, cubic and hexagonal fine structure parameters for the cubic, trigonal and tetragonal Gd^{3+} centres.

2. Experimental procedures

Single crystals of RbCaF₃ doped with 0.3 wt% GdF₃ were grown in graphite crucibles by the flux method using the Bridgman technique. The crystals obtained were transparent and were cleaved easily in the $\{100\}$ planes.

The measurements were made at room temperatures using a JES-FE1XG EPR spectrometer operating in the X-band at the Centre for Instrumental Analysis in Nagoya Institute of Technology. The sample was mounted on a two-axis goniometer MGM-10 (Microdevice) to be rotated in the microwave cavity with the TE_{011} mode. Numerical computations were performed by the computer at the Computation Centre of Nagoya University. The original software programmed by Takeuchi based on the direct matrix diagonalization method was used for the fitting of the spin Hamiltonian to the spectrum and for graphic output of the calculated angular variation.

3. Results

Typical recorder traces of EPR signals are shown in figure 1. Angular variations of resonant fields for the signals marked with 'T' have extremes in the direction with H parallel to the [111] and $[11\overline{2}]$ axes. This shows that the surroundings of the magnetic ions have trigonal symmetry about the [111] axis. The centre is therefore called the 'trigonal centre' hereinafter. In figure 2, signals observed for the centre at 300 K are plotted against external field direction by open circles.

For a trigonal centre, there exist two possible coordinate systems in which fine-structure terms are expressed by Stevens operators O_n^m only with non-negative m. One is the coordinate system A where the principal x, y, z axes are respectively parallel to the $[11\overline{2}]$, $[\overline{1}10]$, [111] directions. Alternative coordinate system B can be obtained by rotating the system A about the z axis by an angle π , so that the principal x, y, z axes are respectively parallel to the $[\overline{1}\overline{1}2]$, $[1\overline{1}0]$, [111] directions. We choose the coordinate system A in the present work.

The spectrum observed can be described by the following spin Hamiltonian with $S = \frac{7}{2}$:

$$\mathcal{H} = g_{\parallel}\beta S_z H_z + g_{\perp}\beta (S_x H_x + S_y H_y) + \frac{1}{3}b_2^0 O_2^0 + \frac{1}{60}(b_4^0 O_4^0 + b_4^3 O_4^3) + \frac{1}{1260}(b_6^0 O_6^0 + b_6^3 O_6^3 + b_6^6 O_6^6)$$
(1)

EPR study of Gd^{3+} in $RbCaF_{3}$

Figure 1. EPR signals observed at 300 K using the X-band spectrometer from an as-grown sample of RbCaF₃ doped with Gd³⁺ ions when (a) $H \parallel [001]$, (b) $H \parallel [111]$ and (c) $H \parallel [110]$.

where β is the Bohr magneton and the Stevens operators O_n^m are defined in Abragam and Bleaney (1970). The spin Hamiltonian was fitted to fourteen resonant fields parallel to the [110], [111], [112] or [110] axes. The root mean square error was 0.1 Gauss. Values obtained for the parameters are listed in table 1. The values in parentheses show leastsquares errors for the last numerals. Signs of b_n^m are determined by assuming a positive value for b_4^3 since this parameter is related to the cubic component of the fine-structure term as will be shown by equation (4). The parameters for the cubic Gd³⁺ centres in RbCaF₃ and CsCaCl₃ and the Gd³⁺-V_{Cs} centre in CsCaCl₃ are also listed in the table for comparison. If we choose the coordinate system B, the signs of the parameters b_2^0 , b_4^0 , b_6^0 and b_6^6 should be changed with the assumption of positive b_4^3 . The coordinate system A may be used for the Gd³⁺-V_{Cs} centre, although clear discrimination of the coordinate system A or B is not given in the original paper.

In KMgF₃ (Abraham *et al* 1971) and KZnF₃ (Arakawa *et al* 1979), divalent host cations have too small ionic radii (Sanderson 1967), namely 0.66 Å for Mg²⁺ and 0.74 Å for Zn²⁺, for substitution by a Gd³⁺ ion (0.97 Å). The Gd³⁺ ions are substituted for the large K⁺ ions (1.33 Å). On the other hand, a Ca²⁺ ion (0.99 Å) has a close ionic radius to that of a Gd³⁺ ion, so that the Gd³⁺ ion can be substituted for the Ca²⁺ ion in the RbCaF₃ crystal. As a result the Gd³⁺ ion forms the cubic centre, for which the spin Hamiltonian parameters have been reported by Buzaré *et al* (1981). The present trigonal centre in RbCaF₃ has the same signs of all the parameters except for b_2^0 as those for the cubic centre. Especially, the sixth-rank fine-structure parameters of the trigonal centre have close values to those of the cubic centre, suggesting that the Gd³⁺ ions are substituted for Ca²⁺ ions in the present trigonal centre.

Trivalent impurity ions substituted for divalent cations in perovskite crystals are often

Figure 2. Angular variation of EPR spectrum from the trigonal Gd^{3+} centre at 300 K. Open circles show the signals observed. The full curves denote the calculated resonant fields using the parameters listed in table 1.

Table 1. Experimental values of the spin Hamiltonian parameters for the trigonal Gd^{3+} centre in RbCaF₃ and a few related Gd^{3+} centres. b_n^m are in units of 10^{-4} cm⁻¹.

	RbCaF3 Trigonal 300 K	RbCaF ₃ Cubic 300 K ^a	CsCaCl ₃ Gd ³⁺ -V _{Cs} 300 K ^b	CsCaCl ₃ Cubic 300 K ^b
81	1.9918(5)	1.992(1)	_	1.9915(10)
81 1	1.9917(5)	1.992(1)	_	1.9915(10)
$b_{2}^{()}$	80.1(1)	—	3.3(5)	<u> </u>
$b_4^{\overline{0}}$	8.36(5)	3.28(3)	9.7(5)	9.2(2)
b_4^3	14(2)	92.8(9)	240(5)	260(6)
$b_6^{\dot{0}}$	1.26(5)	1.48(8)	0.9(5)	0.9(4)
b63	-20(1)	-18(1)	-5.5(5)	-11(4)
b ₆ č	13.0(5)	14.2(9)	17(1)	9(3)

^aBuzaré et al (1981).

^bVaills and Buzaré (1987).

associated with nearest monovalent cation vacancies for compensation of excess positive charge on the impurity ions (Krebs and Jeck 1972, Patel *et al* 1976, Vaills and Buzaré 1987). The trigonal centre in RbCaF₃ may be therefore ascribed to a Gd^{3+} ion associated with a nearest Rb⁺ vacancy (hereafter called the Gd^{3+} –V_{Rb} centre).

4. Separation analysis of fine-structure terms

We consider the transformation properties of Stevens operators O_n^m when the xyz coordinate system is rotated about the z axis by angle ϕ into the new x'y'z' coordinate system. In general, the old O_n^m is expressed by a linear combination of $O_n^{m'}$ which are Stevens operators in the new coordinate system. We notice the following special cases: the O_n^0 become \dot{O}_n^0 for all ϕ ; the O_n^m with m = 3, 4, 6 become \dot{O}_n^m when $\phi = 2\pi/m$; and the O_n^3 become $-\dot{O}_n^3$ when $\phi = 2\pi/6$.

The spin Hamiltonian which describes the EPR spectrum of a Gd^{3+} ion with cubic symmetry is given by

$$\mathcal{H} = g\beta S \cdot H + \frac{1}{60} b_{4c} (O_4^0 + 5O_4^4) + \frac{1}{1260} b_{6c} (O_6^0 - 21O_6^4)$$
(2)

where the x, y, z axes are parallel to the cubic (100) axes. The terms in b_{4c} and b_{6c} are unchanged in their forms by the $2\pi/4$ rotation of the coordinate system about the z axis. This tetragonality in the cubic centre is equivalent for three possible z axis directions, namely [100], [010] and [001] directions.

Similarly to the trigonal Fe^{3+} centre reported in Takeuchi *et al* (1991), we separate here the fine-structure terms for a trigonal Gd^{3+} centre into uniaxial, cubic and hexagonal terms up to the sixth-rank Stevens operators as follows:

$$\frac{1}{3}b_{2}^{0}O_{2}^{0} + \frac{1}{60}(b_{4}^{0}O_{4}^{0} + b_{4}^{3}O_{4}^{3}) + \frac{1}{1260}(b_{6}^{0}O_{6}^{0} + b_{6}^{3}O_{6}^{3} + b_{6}^{6}O_{6}^{6}) \\
= \frac{1}{3}b_{2a}O_{2}^{0} + \frac{1}{60}\left[b_{4a}O_{4}^{0} + b_{4c}\left(-\frac{2}{3}O_{4}^{0} - \frac{40\sqrt{2}}{3}O_{4}^{3}\right)\right] \\
+ \frac{1}{1260}\left[b_{6a}O_{6}^{0} + b_{6c}\left(\frac{16}{9}O_{6}^{0} - \frac{140\sqrt{2}}{9}O_{6}^{3} + \frac{154}{9}O_{6}^{6}\right) + b_{6h}O_{6}^{6}\right].$$
(3)

Equation (3) is valid when the following conditions are satisfied:

$$b_{2a} = b_2^0 \qquad b_{4a} = b_4^0 - \frac{1}{20\sqrt{2}}b_4^3 \qquad b_{6a} = b_6^0 + \frac{4}{35\sqrt{2}}b_6^3$$

$$b_{4c} = -\frac{3}{40\sqrt{2}}b_4^3 \qquad b_{6c} = -\frac{9}{140\sqrt{2}}b_6^3 \qquad b_{6b} = b_6^6 + \frac{11}{10\sqrt{2}}b_6^3$$
(4)

The terms in b_{2a} , b_{4a} and b_{6a} are unchanged in their forms by any rotations of the coordinate system about the z axis. These terms denote therefore uniaxiality of the wavefunction for magnetic electrons perturbed by the ligand field which includes the effects of the electrostatic crystalline field and covalency. For the wave function with spherical symmetry, that is pure S state, or cubic symmetry, these components of the fine-structure terms vanish. In a low-symmetry centre, b_{4c} represents the mean feature of the tetragonalities about the three cubic axes.

1422 H Takeuchi et al

The terms in b_{4c} and b_{6c} are unchanged by the $2\pi/3$ rotation about the z axis. This trigonality is included in the cubic symmetry for the case with vanishing b_{na} and b_{6h} . The parameters b_{4c} and b_{6c} denote the cubic character of the wavefunction. The term in b_{6h} is unchanged by the $2\pi/6$ rotation of the coordinate system about the z axis, so that the term denotes the hexagonality of the Gd³⁺ wavefunction. The terms in b_{na} and b_{6h} arise due to the deformation of the Gd³⁺ wavefunction from cubic symmetry. If we assume for simplicity that the Gd³⁺ wavefunction in a trigonal centre is determined by the coordination of the ligand octahedron, b_{na}/b_{nc} becomes greater for large trigonal elongation or compression of the octahedron and b_{6h}/b_{6c} increases with trigonal compression toward an extreme value for hexagonal symmetry which is completed in a planar sixfold coordination. Values of the axial parameters b_{na} (n = 2, 4, 6), cubic parameter b_{nc} and hexagonal parameter b_{6h} calculated by equations (4) are listed in table 2.

Table 2. Values of the uniaxial, cubic and hexagonal parameters for the Gd^{3+} centres with trigonal, tetragonal and cubic symmetries in perovskite type compounds ABX₃ at room temperature. *R* are the metal-ligand distances in the matrix crystals. b_{na} , b_{nc} and b_{6h} are in units of 10^{-4} cm⁻¹.

Centre	R (Å)	T (K)	b_{2a}	b_{4a}	b _{6a}	b_{4c}	b_{6c}	b_{6h}	Symmetry
Cubic Gd3+			<u>-</u>						
RbCdF3	2.200ª	295 ^b	—	—-	_	-4,44	0.82		Cubic
RbCaF ₃	2.227ª	300°	—		_	-4.92	0.83	—	Cubic
CsCdF ₃	2.230 ^a	296 ^b	_		_	-4.82	0.86		Cubic
CsCaF ₃	2.262ª	296 ^b	_		 .	-5.49	0.89	_	Cubic
CsCaCl;	2 691 ^d	300°				-13.8	0.5	_	Cubic
Gd ³⁺ -V _A									
RbCaF ₃		300	80.1	7.87	-0.36	-0.74	0.91	-2.5	Trigonal
CsCaCl	3	300 ^e	_3.3	1.2	0.46	-13	0.25	13	Trigonal
Gd ³⁺ –V _B									-
RbCdF ₃		302 ^f	-291.3	6.20	-0.09	-8.32	0.90		Tetragonal
RbCaF ₃		297 ^f	-274.9	5.72	0.00	-8.58	0.83		Tetragonal
CsCdF ₃		300 ^f	-315.1	6.90	-0.09	-9.28	0.90		Tetragonal
CsCaF ₃		298 ^f	-314.7	6.91	-0.08	-9.96	0.90	_	Tetragonal
Gd ³⁺ -Li ⁺									-
RbCdF ₃		302 ^f	-330.2	5.26	0.04	7.66	0.82	—	Tetragonal
RbCaF ₃		297 ^f	-318.2	5,84	-0.05	-8.80	0.91	_	Tetragonal
CsCdF ₃		300^{f}	-379.8	7.14	-0.08	-9.40	0.90	_	Tetragonal
CsCaF ₃		298 ^f	-388.3	8.17	-0.03	-10.88	0.88	_	Tetragonal

⁴Rousseau et al (1978).

^bArakawa et al (1982).

^cBuzaré et al (1981).

^dVaills et al (1986).

^eVaills and Buzaré (1987).

^fArakawa et al (1985).

Arakawa *et al* (1985) reported fine-structure parameters for the tetragonal Gd^{3+} centres associated with nearest divalent cation vacancies ($Gd^{3+}-V_B$ centre) or Li⁺ ions at the nearest divalent cation site ($Gd^{3+}-Li^+$ centre) in several perovskite fluorides ABF₃. In the later work (Takeuchi *et al* 1987), the fine-structure terms with tetragonal symmetry for the Gd^{3+} centres in RbCdF₃ and CsCdF₃ were separated into uniaxial and cubic terms to compare them with those of the cubic and orthorhombic Gd^{3+} centres. Here, in the same way we calculate the uniaxial and cubic parameters at room temperature for the tetragonal centres in RbCaF₃ and CsCaF₃. Results are summarized in table 2. Except for b_{2a} , the axial and cubic parameters for the trigonal centre in RbCaF₃ have the same signs as those for the tetragonal centre in the same matrix. The values of b_{2a} for the trigonal centres in both RbCaF₃ and CsCaCl₃ are positive as contrasted with negative values for the tetragonal centres. The trigonal centre in CsCaCl₃ has very small b_{2a} value and a close value of b_{4c} to that of the cubic centre. On the other hand, b_{2a} for the trigonal centre in RbCaF₃ is considerably larger than that for CsCaCl₃. This suggests that the surroundings of the Gd³⁺ ion in RbCaF₃ are much more distorted from cubic configuration than those in CsCaCl₃.

5. Discussion

A Gd^{3+} ion has ionic radius close to those of a Ca^{2+} and a Cd^{2+} ion. In the uncompensated Gd3+ centres (cubic centre) ligand anions are expected to deviate from the face centre points toward the Gd^{3+} ion due to excess positive charge on the Gd^{3+} ion. Rewaj et al (1992) reported that each magnitude of b_4^4 (= $5b_{4c}$) for the uncompensated Gd³⁺ centres in CsCaF₃, RbCaF₃ and RbCdF₃ increases with increasing hydrostatic pressure. This result suggests that $|b_{4c}|$ increases with decreasing $Gd^{3+}-F^-$ distance in perovskite fluorides. As the b_{4c} at 4.2 K are -6.90 ± 0.02 for CsCaF₃ and -6.10 ± 0.04 for CsCdF₃ in units of 10^{-4} cm^{-1} (Allsopp et al 1987), the Gd³⁺-F⁻ distance for CsCaF₃ is considered to be smaller than that for CsCdF₃. Allsopp et al estimated the Gd³⁺-F⁻ distances R to be 2.204 Å for both CsCaF3 and CsCdF3 at 4.2 K using the Baker model in the analysis of the nearest superhyperfine interaction (SHFI) parameters A_s and A_p determined from their ¹⁹F ENDOR measurements. Metal-ligand distances R₀ in matrices are 2.257 Å for CsCaF₃ and 2.226 Å for CsCdF₃ at 4.2 K, so that larger fluorine deviation toward the Gd³⁺ ion takes place for the matrix crystal with larger lattice constant. Experimental values of A_s are $-3.869\pm$ 0.004 MHz for CsCaF₃ and -3.759 ± 0.003 MHz for CsCdF₃. Considering only A_s, which may be more reliable for estimation of metal-ligand distances than A_p , we obtain a Gd³⁺- F^- distance for CsCaF₃ smaller than that for CsCdF₃. The larger $|b_{4c}|$ for CsCaF₃ than that for CsCdF₃ is consistent with the larger $|A_s|$ for CsCaF₃. Thus, the stressed EPR results and the conclusive ligand-ENDOR results lead us to the fact that $|b_{4c}|$ increases with decreasing $Gd^{3+}-F^-$ distance in perovskite fluorides. The $|b_{4c}|$ values for the cubic Gd^{3+} centre in CsCaCl₃ are about a factor of 2.5-3 larger than those in the fluorides. This suggests that the $4f^7$ electrons are affected by cubic deformation of outer 5s, 5p shell partly due to covalency.

From ¹⁹F-ENDOR measurements for the $Fe^{3+}-V_K$ centre in KZnF₃, Krebs and Jeck (1972) found tilts of the $Fe^{3+}-F^-$ bond directions apart from the cubic axes. Similar tilts of the $Cr^{3+}-F^-$ bond directions were found in the ¹⁹F-ENDOR measurements for the $Cr^{3+}-V_K$ centre in K₂ZnF₄ (Takeuchi *et al* 1982, Takeuchi 1983). Recently, Takeuchi *et al* (1991) reported EPR results for the $Fe^{3+}-V_{Rb}$ centre in Rb₂ZnF₄, and analysed the spin Hamiltonian parameters on the basis of the ligand distortion model where the front fluorines are deviated toward the opposite directions to the A⁺ vacancy. Similar deviations of ligand ions are therefore expected to happen in the Gd³⁺-V_A centres in RbCaF₃ and CsCaCl₃.

The space between A⁺ and X⁻ ions relative to the metal-ligand distance R (= a/2) of a matrix crystal is given by $\sqrt{2} - (r_A + r_X)/R$, where r_A and r_X are respectively the ionic radii of the A⁺ and X⁻ ions. Estimated values are 0.16 for RbCaF₃ and 0.12 for CsCaCl₃ with the values $r_{Rb} = 1.47$ Å and $r_{Cs} = 1.67$ Å. These values suggest that in the Gd³⁺-V_A centres the tilt of the bond direction for the front ligand by the presence of the A⁺ vacancy takes place more easily in RbCaF₃ than in CsCaCl₃. The larger b_{2a} value for RbCaF₃ than that for CsCaCl₃ is consistent with the larger relative space for ligand deviation along the A⁺-X⁻ direction. By decreasing temperature or increasing pressure the $B^{2+}-X^{-}$ distance is decreased and in some cases the X^{-} ion may be distorted from the face centre of the cubic unit cell. Structural instability of the perovskite crystal ABX₃ is related to the tolerance factor defined by

$$t = \frac{r_{\rm A} + r_{\rm X}}{\sqrt{2}(r_{\rm B} + r_{\rm X})} \tag{5}$$

where r_A , r_B and r_X are respectively the ionic radii of the A⁺, B²⁺ and X⁻ ions. This can be seen from figure 3, where the transition temperatures from cubic to lower phase are plotted for ABF₃ (A = K, Rb; B = Ca, Cd) and for ACaCl₃ (A = K, Rb, Cs). Each transition temperature for the fluoride or chloride increases almost linearly with decreasing t. The X⁻ ion can deviate in the A₄X face plane more easily for the crystal with smaller t. The ligand octahedron in the Gd³⁺-V_{Rb} centre in RbCaF₃ may be more distorted than that in the Gd³⁺-V_{Cs} centre in CsCaCl₃, as the former has a smaller tolerance factor and a larger relative space for deviation along the A⁺-X⁻ direction than the latter. Thus, the magnitude of b_2^0 of the trigonal Gd³⁺ centre is related to the tolerance factor that characterizes the ease of the rotational distortion of anion octahedron.

Figure 3. The variation of the transition temperatures for structural changes from cubic to low symmetry against the tolerance factor t. The full curves are guides for the eyes.

For the tetragonal centres, b_{4a} increases roughly with increasing $|b_{2a}|$. The ratios b_{4a}/b_{2a} for the Gd³⁺-V_B centres are almost constant (-0.021 to -0.022), and those for the Gd³⁺-Li⁺ centres are in the range -0.016 to -0.021. A similar trend was not found for b_{6a} as these values are too small. In contrast to the tetragonal centres, the ratio b_{4a}/b_{2a} for the trigonal centre in RbCaF₃ is positive and its magnitude is about a factor of five larger than those of the tetragonal centres. b_{6a} has a considerably larger magnitude as compared with the tetragonal centres. Thus, in the trigonal centre the fourth and sixth axial components of the fine-structure terms are significant in description of the spectrum.

There exists a characteristic trend that $|b_{4c}|$ for the trigonal centres are smaller and those for the tetragonal centres are larger than $|b_{4c}|$ for the cubic centres in the same matrices. It is considered by the ligand distortion model that in the trigonal centre the distances to six ligands become larger by the large deviations of the front ligands away from the vacancy and a small deviation of Gd^{3+} toward the vacancy. In contrast to b_{4c} , the parameter b_{6c} is approximately constant among the cubic, tetragonal and trigonal centres in the fluoride matrices. This parameter may not be affected so much by the distortion of surroundings. This constancy can be used as a measure of a well fitted set of experimental values.

6. Conclusions

The trigonal centre in RbCaF₃ has been identified as the substitutional Gd^{3+} centre at a Ca^{2+} site associated with a nearest Rb⁺ vacancy. The large b_{2a} value compared with that for the $Gd^{3+}-V_{Cs}$ centre in CsCaCl₃ is explained by large ligand deviations from cubic configuration due to the lack of positive charge at the Rb⁺ vacancy. The $Gd^{3+}-V_A$ centre with larger b_{2a} has larger space between the A⁺ and X⁻ ions. This trend is related to the higher transition temperature from cubic to lower symmetry of the matrix crystal for the trigonal centre with larger b_{2a} . For the trigonal Gd³⁺ centre the terms in b_{4a} and b_{6a} are significant compared with those for the tetragonal centres. The magnitudes of b_{2a} , b_{4a} and b_{4c} for the tetragonal centres increase roughly with increasing lattice constant of the matrix crystals. The constancy of b_{6c} among the cubic, trigonal and tetragonal Gd³⁺ centres in perovskite fluoride matrices can be used as a measure of a well fitted set of experimental values.

Acknowledgments

The authors thank Dr Masahiro Mori for useful discussions. This work has been supported by a Grant-in-Aid for Scientific Research on Priority Areas 'New Development of Rare Earth Complexes' No 06241232 from the Ministry of Education, Science and Culture.

References

Abragam A and Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (Oxford: Clarendon) Abraham M M, Finch C B, Kolopus J L and Lewis J T 1971 Phys. Rev. B 3 2855-64 Allsopp R A, Baker J M, Bluck L J and Buzaré J Y 1987 J. Phys. C: Solid State Phys. 20 451-62 Arakawa M, Aoki H, Takeuchi H, Yosida T and Horai K 1982 J. Phys. Soc. Japan B 51 2459-63 Arakawa M, Ebisu H and Takeuchi H 1985 J. Phys. Soc. Japan B 54 3577-83 Arakawa M, Ebisu H, Yosida T and Horai K 1979 J. Phys. Soc. Japan B 46 1483-7 Buzaré J Y, Fayet-Bonnel M and Fayet J C 1981 J. Phys. C: Solid State Phys. 14 67-81 Krebs J J and Jeck R K 1972 Phys. Rev. B 5 3499-505 Patel J L, Davies J J, Cavenett C, Takeuchi H and Horai K 1976 J. Phys. C: Solid State Phys. 9 129-38 Rewaj T, Krupski M, Kuriata J and Buzaré J Y 1992 J. Phys.: Condens. Matter 4 9909-18

Rousseau J J, Leblé A and Fayet J C 1978 J. Physique 39 1215-23

Sanderson R T 1967 Inorganic Chemistry (New York: Reinhold)

Takeuchi H 1983 Res. Bull., College Gen. Educ. Nagoya Univ. B 27 41-9

Takeuchi H, Arakawa M, Aoki H, Yosida T and Horai K 1982 J. Phys. Soc. Japan 51 3166-72

- Takeuchi H, Arakawa M and Ebisu H 1987 J. Phys. Soc. Japan 56 4571-80 (erratum 1990 59 2297)

Vaills Y and Buzaré J Y 1987 J. Phys. Chem. Solids 48 363-70

Vaills Y, Buzaré J Y, Gibaud A and Launay Ch 1986 Solid State Commun. 60 139-41